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Abstract. A perceptron is trained by a random bit sequence. In comparison with the
corresponding classification problem, the storage capacity decreases toαc = 1.70± 0.02 due to
correlations between input and output bits. The numerical results are supported by a signal-to-
noise analysis of Hebbian weights.

1. Introduction

Artificial neural networks are successful in predicting time series (Weigand and Gershenfeld
1993). Given a sequence of real numbers, a multilayer network is able to learn fromN

consecutive numbers the following one. After learning a part of the sequence, the network
is able to generalize. IfN consecutive numbers are taken from the part of the sequence
which the network has not learned, the network can predict the following number to some
extent.

Using methods and models of statistical mechanics, training from a set of examples and
generalization of neural networks has been studied intensively (Hertzet al 1991, Kinzel and
Opper 1991, Opper and Kinzel 1996). Most work has been concentrated on perceptrons
and binary classification problems. A set ofN -dimensional input vectors is classified by a
perceptron. A different perceptron is trained by this set of examples; after the training
process the network is able to generalize: it has some overlap to the weights of the
perceptron which has generated the examples. If the classification is not performed by
a different perceptron but is assigned randomly, the network can still learn a certain amount
of examples. The maximum number of examples which can be classified by a perceptron
is related to the storage capacity to the corresponding attractor networks (Gardner 1988).

Only recently has this approach been extended to time series analysis (Eisensteinet al
1995). A perceptron was trained from a series of bits which was produced by a different
perceptron. Hence, the generation of time series by a neural network is also interesting in
this context and only recently has an analytic solution of a stationary time series generated
by a perceptron been found (Kanteret al 1995).

It turns out that a perceptron can predict bit sequences very well, if those are taken from
stationary time series produced by a different perceptron (Eisensteinet al 1995). Already
a small training set leads to a perfect prediction of the rest of the sequence, at least for
N → ∞. However, the overlap between a learning and a generating network is very small.

In this paper we study the analogy of the storage-capacity problem in the context of bit
sequences. A set ofP consecutive bits, which are randomly chosen, is repeated periodically

0305-4470/96/247965+08$19.50c© 1996 IOP Publishing Ltd 7965



7966 M Schröder et al

Figure 1. A perceptron learning a periodic time series. The desired output of the perceptron
(marked) is the next bit of the series and therefore part of other input patterns as well.

(or placed on a ring). A perceptron withN < P is trained on this bit sequence, where the
output bit is given by the bit which follows theN input bit. Hence, the only difference
to the examples used for the classification problem are correlations between the input and
output. The output bit is contained in the input ofN examples.

In section 2 we introduce the bit sequence, which we use for training a perceptron
which is simulated in section 3. Section 4 presents a signal-to-noise analysis of the Hebbian
learning rule. A general Boolean function is considered in section 5, and section 6 contains
a summary and the conclusions.

2. Bit sequence

P bits Si ∈ {−1, 1}; i = 1, . . . , P are chosen randomly and independently. This sequence
is repeated periodically fromi = −∞ to i = ∞ (or placed on a ring, equivalently).N
consecutive bits are used as an input to a perceptron with weightswj ∈ R; j = 1, . . . , N

(see figure 1):

σν = sign
N∑

j=1

wjξ
ν
j with ξν

j = Sj−1+ν . (1)

The problem we are interested in here is the following. Can we find a weight vector
w = (w1, . . . , wN) which reproduces the next bits in the sequence? That is

σν = Sν+N for all ν ∈ N. (2)

In particular we are interest in the maximal numberPc(N) of bits which can be reproduced
correctly by a perceptron forN → ∞; as usual we define

α = P/N αc = lim
N→∞

Pc(N)

N
. (3)

There exist mathematical theorems about the number configuration{σν} which can be
realized by (1), which are already more than 140 years old (Schläfli 1852, Cover 1965).
If the P input vectorsξν = (ξ ν

1 , . . . , ξ ν
N) are in a general position (i.e. if any subset of

N vectors is linearly independent), then the numberC(P, N) of possible configurations
{σν} ∈ {+1, −1}P is given by

C(P, N) = 2
N−1∑
i=0

(
P − 1

i

)
. (4)

In our case of the random bit sequence we expect the input vectorsξν to be in a general
position. ForP 6 N one obtainsC(P, N) = 2P ; hence, any bit sequence withP 6 N

can be perfectly predicted by a perceptron. ForP < 2N there is still a large fraction of
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configurations which is given by (1); this fraction goes to one forN → ∞. This means
that for random configurations{σν} the probability to map them by a perceptron is one in
the limit of N → ∞. For P > 2N this probability is zero. Hence, for a perceptron and
random examples one findsαc = 2 (Gardner 1988).

However, in our case the configurations{σν} are not randomly chosen but taken from
the input vectors. Each output bitσν appears inN input vectorsξν+1, . . . , ξ ν+N also. There
are correlations between the input vectors and the output bits. In addition, only thefraction
of configurationσν which cannot be reproduced by a perceptron goes to zero forN → ∞
andN < P < 2N ; their number is still increasing exponentially withN . For instance, for
N = 100 andα = 1.8 (4) gives about 1054 configurations which are not linearly separable,
that is 6.7% of all of the possible 2180 ones. Conversely, forP > 2N the number of
configurations which can be reproduced by a perceptron still increases exponentially with
N , although their fraction disappears. Hence, it is not obvious, whether the patterns given
by a bit sequence belong to the first or second class, which means whetherαc < 2 or
αc > 2.

In the uncorrelated case the storage capacityαc has been calculated using the replica
method (Gardner 1988). Correlations between the input vectors do not change the result
αc = 2. Only if there is a bias for the output bitsand for the input bits the storage capacity
αc increases with the bias. If the patterns are anticorrelatedαc can be lower thanαc = 2
also (Ĺopezet al 1995).

Calculating the version space of weights in terms of replicas is hard, since the input
and output bits are correlated. Recently some progress has been reported (Saad 1996).

Here, we have studied the bit sequence numerically.

3. Perceptron: simulations

To calculate the storage capacityαc of the perceptron being trained by a random bit sequence,
we have used two methods.

(i) We have used several routines which try to minimize the number of errors and
indicate whether they succeeded or not. Hence, we obtained a fractionf (α, N) of patterns
for which the routine could find a solution. The capacityαc(N) is defined byf (αc, N) = 1

2.
Obviously, we obtain a lower bound for the trueαc, only. The results did not depend on the
actual algorithm within the expected error bounds. We have used a routine that minimizes
the ‘linear cost function’E = 6P

ν=0θ(1 − Eν)(1 − Eν) with Eν = 1
N

6N
j=1wjξ

ν
j σ ν (without

constraining the vectorw). Preliminary results have been reported by Bork (1994).
(ii) The other estimate uses the median learning time (Prielet al 1994). For random

patterns the average learning timeτa of the perceptron algorithm diverges asτ
−1/2
a ∼ (αc−α)

for α → αc (Opper 1988). We use this power law in our case, also. The medianτm of
the distribution of learning times calculated forα < αc andαc is obtained from a fit to the
power-law divergence. This method has the advantage that one does not have to determine
whether a pattern cannot be learned at all. If the number of learning steps is larger than the
median the algorithm can stop; this saves a large amount of computer time.

Figure 2 and table 1 show the results of the simulations. In the uncorrelated case both of
the methods already give the exact resultαc = 2 within the statistical error and forN = 100.
If we use the input from the bit sequence, but random output bits, the results agree with
αc = 2, also. However, if in addition we use the output bits from the bit sequence we obtain
αc = 1.70± 0.02. Hence, the correlations between output bits and input vectors decrease
the storage capacity. For the perceptron it is harder to learn a random bit sequence than a
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Figure 2. Left-hand side: the probabilityf of a bit sequence to be not linearly separable as
a function ofα = P/N . The sequence is constructed fromP random bits which are repeated
periodically. The simulations are performed for a perceptron withN = 100 input bit andf
is averaged over 50 sets of patterns at least. Right-hand side: the median learning time to the
power of− 1

2 as a function ofα. The size of the perceptron isN = 400, andτ is averaged over
1000 sets of patterns. The line is a least square fit to the data.

Table 1. The storage capacity of a perceptron learning different tasks. Measured with (method 1)
half-error and (method 2) median learning-time method.

Method 1 Method 2

RandomN = 100 1.99± 0.01 1.995± 0.01
Time seriesN = 100 1.85± 0.025 1.82± 0.02
Time seriesN = 400 1.82± 0.02
Ring N = 100 1.7 ± 0.025 1.69± 0.01
Ring N = 400 1.7 ± 0.02
Ring (rnd out)N = 100 1.98± 0.05 1.99± 0.01
Ring (rnd out)N = 400 1.98± 0.02

Magnetizationm = 0.4 N = 100
Ring 1.95± 0.05 1.95± 0.03
Random 2.25± 0.05

random classification problem. This is due to the correlations between the input and output
but not due to the correlations between the input vectors.

If a perceptron which has learned a bit sequence perfectly is used as a bit generator,
then any initial state ofN bits taken from the sequence reproduces the complete sequence.
Hence the sequence is an attractor of the bit generator. However, we found that the basin
of attraction is very small. If only one bit is flipped in the initial state then there is a high
probability that the generator runs into a different sequence.

We have also studied two additional problems.
(i) The P random bits are not repeated periodically but the perceptron is trained with

a string ofN + P random bits. Hence, there are stillP patterns but an output bit belongs
only to part of the other input patterns. On average the correlations are weaker. Indeed,
we find that the storage capacityαc = 1.82± 0.02 is larger than the one for the periodic
sequence.

(ii) With a biasm = 1
p

∑P
i=1 Si in the bit sequence, the storage capacity increases. This

is similar to the random classification problem (Gardner 1988).
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4. Perceptron: Hebbian learning rule

In order to get some insight from analytic calculations we now consider the Hebbian learning
rule

w = 1

N

P∑
ν=1

σνξ
ν. (5)

Output bitsσν and input vectorsξν are taken from a bit sequence{Si}, (1) and (2). It is
known that the Hebbian weights cannot map the examples perfectly. However, the training
error can be calculated from a signal-to-noise analysis (see for instance Hertzet al 1991).
The sign of the following stabilityEν shows whether an example is classified correctly

Eν = σ νwξν = 1

N

N∑
i=1

P∑
µ=1

σ νσµξν
i ξ

µ

i . (6)

The fraction of negative values ofEν defines the training error.
We calculated the first two moments〈E〉 and〈E2〉 of Eν , where〈. . .〉 means an average

over the distribution of the examples, i.e. over all realizations of the bit sequence. If all
bits σν andξν

i are random one has

〈σ νσµ〉 = δνµ 〈ξν
i ξ

µ

j 〉 = δνµδij . (7)

This gives

〈E〉 = 1 〈E2〉 = 1 + α.

In the limit N → ∞ the values ofEν are Gaussian distributed with mean one and standard
deviation

√
α. However, for the periodic bit sequence, (1) and (2), the values ofσν andξν

j

are taken from the random bitsSi . For instanceσ ν is identical withξ
µ

j for j = 1, . . . , N

andµ = ν + N + 1 − j . Taking this into account we find for 1< α < 2:

〈E〉 =
 1 + 1

N
for P even

1 for P odd

〈E2〉 =


2 + α + 6 − α

N
− 4

N2
for P even

2 + α − 2

N
for P odd.

(8)

For α > 2 the results above for oddP hold for even ones, also. Hence forN → ∞ the
standard deviation of theEν values is

√
1 + α instead of

√
α of the uncorrelated case. The

correlations increase the noise relative to the signal. Assuming a Gaussian distribution of
the Eν values in the limitN → ∞, which is supported by our numerical simulation, we
obtain the training errorεt as

εt = φ

(
− 1√

1 + α

)
(9)

with the error function

φ(x) =
∫ x

−∞

1√
2π

e− y2

2 dy. (10)
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Figure 3. The training error of Hebbian weights for different
topologies. The inputs are chosen binary.♦; random patterns
and ×; patterns from a random bit sequence with a periodic
boundary condition. The simulations were done forN = 200
and averaged over 100 samples each. The curves show the
theoretical results.

If the random bits are not repeated periodically, but arranged linearly as discussed above,
the moments depend on the numberν of the pattern. Ifν = 1 is the first andν = P is the
last pattern we define

γ =
{

ν/N for ν 6 N

1 for ν > N .
(11)

In this case the training error depends onγ and we find

εt = φ

(
− 1√

α + γ 2

)
. (12)

Figure 3 shows the training errorεt (α) for the uncorrelated bits and the periodic bit
sequence. In the latter caseεt is averaged over the patterns. The correlations of the bit
sequence increase the training error, in agreement with the decrease of the storage capacity
shown in the previous section.

5. General Boolean function

Up to now we have restricted our map to a perceptron. We expect that multilayer networks
can reproduce a larger bit sequence, in accordance to the higher storage capacity of the
committee machine (Prielet al 1994). In this section we study the storage capacity of a
general Boolean functionb : {+1, −1}N → {+1, −1}, which is the size of the random bit
sequence with periodP which can be reproduced by any Boolean functionb, i.e.

b(Sν, . . . , Sν+N−1) = Sν+N ν = 1, . . . , P . (13)

Since we have the freedom to choose for any input configuration(Sν, . . . , Sν+N−1) an
arbitrary output bitSν+N , our problem reduces to the question if all the input configurations
are different from each other. If all(Sν, . . . , Sν+N−1) are different then we can define a
Boolean function which maps each of those states to the corresponding bitSν+N . For the
rest of the 2N − P input states we have the freedom to choose an arbitrary output bit;
hence, in this case, there are 2(2N −P) many Boolean functions which map the bit sequence
correctly.

If two of the input configurations(Sν, . . . , Sν+N−1) are identical there is still a probability
of 1

2 that the two output bits are different, also. To get an analytic estimate for the size
of a random bit sequence which can be reproduced by a Boolean function we neglect
correlations between the input configurations. That means we considerP configurations
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(Sν
1, . . . , Sν

N); ν = 1, . . . , P where all of the bitsSν
i are chosen randomly and independently.

We want to calculate the probabilityf that all of theP states are pairwise different. There
are 2N many possible states. The first configurationν = 1 can be any of those states. The
second one can take any of the 2N − 1 remaining states, etc. Hence, the numberC of
allowed configurations is

C = 2N(2N − 1)(2N − 2) · · · (2N − P + 1) (14)

which gives

ln C =
P∑

ν=1

ln(2N − ν + 1) =
P∑

ν=1

[
N ln 2 + ln

(
1 − ν − 1

2N

)]
(15)

= PN ln 2 +
P∑

ν=1

ln

(
1 − ν − 1

2N

)
. (16)

If P � 2N we can expand ln and obtain

ln C ' PN ln 2 − 1

2N

P (P − 1)

2
. (17)

Since the total number of all possible configurations is 2PN , the function of the allowed
ones is

f ' exp

[
−P(P − 1)

2N+1

]
. (18)

We define the average periodPc by f (Pc) = 1
2 and obtain for largeN

Pc =
√

2 ln 2 2N/2. (19)

Hence we expect that the average length of the bit sequence which can be reproduced
by a Boolean function scales as

√
2N . In fact our problem is similar to the random map,

where the average cycle length has the same scaling properties (Harris 1960, Derrida and
Flyvbjerg 1987).

The configurations taken from a random bit sequence are correlated, since consecutive
configurations are obtained by shifting a window ofN bits over the sequence. However,
our numerical simulations show that these correlations do not change the scaling law (19).
For a given sequence withP bits the sizeN of the window is increased until this sequence
can be reproduced by a Boolean function.Nc is defined as the window sizeN where 50%
of the sequences are reproduced. In figure 4,P is shown as a function ofNc. For P 6 17,
Nc is determined by exhaustive enumeration. For largerP valuesNc is estimated from up
to 105 random samples. The log–linear plot shows that the data are consistent with

P = 1.6 ×
√

2Nc . (20)

The comparison with (19) shows that the correlations seem to change the prefactor from
1.17 to 1.6, but the number still increases with

√
2N , the size of the input space.

6. Summary

A perceptron ofN input bits has been trained by a random bit sequence with a periodP .
Each output bit is contained inN input vectors. These correlations decrease the storage
capacity toαc = 1.7 ± 0.02 compared toαc = 2 for uncorrelated output bits. For the
corresponding bit generator the bit sequence has a tiny basin of attraction.



7972 M Schröder et al

Figure 4. The length of a cycle that is learnable by a Boolean function as a function ofNc. The
values up toP = 17 are exact. The values up toP = 100 are averaged over 100 000 samples,
for P = 251 over 50 000, forP = 503 over 1000 and forP = 1007 over 100 samples. The
errorbars are given. The line showsP = exp(0.5)20.5Nc .

An analysis of Hebbian weights shows that a bit sequence gives a larger noise-to-signal
ratio than a random classification problem. This result is in agreement with the lower
storage capacity.

If a general Boolean function is trained by the random bit sequence, the maximal period
P scales as

√
2N , the size of the input space.
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